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Free longitudinal vibration analysis of multi-step non-uniform bars
based on piecewise analytical solutions
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Abstract

Using appropriate transformations, the differential equations of free longitudinal vibrations of bars with variably distributed mass
and stiffness are reduced to Bessel’s equations or ordinary differential equations with constant coefficients by selecting suitable
expressions, such as power functions and exponential functions, for the distributions of stiffness and mass. Exact analytical solutions
to determine the longitudinal natural frequencies and mode shapes for a one step non-uniform bar are derived and used to obtain
the frequency equation of a multi-step non-uniform bar with several boundary conditions. This approach which combines the transfer
matrix method and closed-form solutions of one step non-uniform bars leads to a single frequency equation for any number of
steps. Numerical example shows that the computed values of the longitudinal fundamental natural frequency and mode shape of a
tall building by the proposed method are close to the field measured data. It is also demonstrated through the numerical example
that the selected expressions are suitable for describing the distributions of stiffness and mass of typical tall buildings. 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The longitudinal vibration of non-uniform bars is a
subject of considerable scientific and practical interest
that has been studied extensively. For example, the
analysis of longitudinal vibration of non-uniform bars is
important in the design of foundation. Meek and Wolf
[1–3] presented an extensive set of solutions for ‘cone
models’ (in essence, tapered rods) for foundation design.
Wang (Ref. [4] pp. 320–25) reported that the magnitude
of the vertical component of ground motion is often
about one-third of the horizontal component, and the
vertical component of ground motions has a significant
effect on earthquake induced responses of high-rise
structures. Thus, it is necessary to determine the natural
frequencies and mode shapes in vertical direction for
high-rise structures at design stage for certain cases.
When analysing free vibrations of high-rise structures,
it is possible to regard such structures as a cantilever bar

* Tel.: +852-2784-4677; fax:+852-2788-7612.
E-mail address:bcqsli@cityu.edu.hk (Q.S. Li).

0141-0296/00/$ - see front matter 2000 Elsevier Science Ltd. All rights reserved.
PII: S0141-0296 (99)00053-X

with varying cross-section [4–6]. The solution for free
longitudinal vibration of uniform structural members is
well known. However, in general, it is not possible or,
at least, very difficult to get the exact analytical solutions
of differential equations for free vibrations of bars with
variably distributed mass and stiffness. These exact bar
solutions are available only for certain bar shapes and
boundary conditions. Conway et al. ([7] obtained an
exact solution for a conical beam in terms of Bessel
functions. Wang [4] derived the closed-form solutions
for the free longitudinal vibration of a bar with variably
distributed stiffness and mass that were described by
exponential functions. Bapat [8] obtained exact solutions
for the free longitudinal vibration of exponential and cat-
enoidal rods. Lau [9] and Abrate [10] derived closed-
form solutions for the free longitudinal vibration of rods
whose cross-section varies asA(x)=A0(x/L)2 and
A(x)=A0[1+a(x/L)]2, respectively. Kumar et al. [11]
found exact solutions for the free longitudinal vibration
of non-uniform rods whose cross-section varies as
A(x)=(a+bx)n and A(x)=A0sin2(ax+b). The natural fre-
quencies of such rods for various end conditions were
calculated, and their dependence on taper was discussed.
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Nomenclature

y displacement in the longitudinal direction
p(x,t) intensity of axial force
X(x) mode shape function
w circular natural frequency
m̄x mass per unit length at sectionx
Kx axial stiffness at sectionx
H height of the structure
α longitudinal stiffness atx=0
a mass per unit length atx=0
β,γ,c constants in Eq. (3)

In order to find the closed-form solutions for the
longitudinal free vibration of non-uniform rods or bars,
it is usually assumed that the mass of a rod or a bar is
proportional to its stiffness (e.g. Wang [4], Li et al. [6],
Kumar et al. [11]). This calculation model is reasonable
for a part of high-rise structures. However, this assump-
tion is not valid for tall buildings and many high-rise
structures. This is due to the fact that the mass of floors
is 80% or even more of the total mass of a tall building,
and the variation of mass at different floors is not sig-
nificant. So, the mass distribution with height is almost
constant for many cases, suggesting that the value of
mass of a tall building is not necessarily proportional to
its stiffness. This is confirmed by a series of shaking
tests on buildings of various types in which the mass
and stiffness of individual buildings have been measured
and reported [5,12,13]. In this paper, exact analytical sol-
utions for free longitudinal vibrations of one-step bars
with variably distributed stiffness and mass, in which
the value of mass is not necessarily proportional to its
stiffness, are proposed. The derived analytical solutions
are used to obtain the frequency equation of a multi-step
non-uniform bar with several boundary conditions. This
approach which combines the transfer matrix method
and closed-form solutions of one step non-uniform bars
leads to a single frequency equation for any number
of steps.

Apart from the several analytical methods for analys-
ing limited classes of non-uniform rods or bars, many
approximate methods have been developed. These
include the Ritz method, the finite strip method (FSM)
and the finite element method (FEM). In general, the
Ritz method can provide accurate solutions, however, it
depends on the choice of global admissible functions.
Liew and his co-workers [14–18] have developed
efficient three-dimensional Ritz algorithms for the free
vibration analysis of elastic solid cylinders. Their
method, developed based on a global three-dimensional
elasticity energy principle with polynomial-based dis-
placement shape functions, is capable of extracting all
possible modes of vibration for elastic solid cylinders.

Their work provided useful benchmarking reference for
research development in simplified beam theories
because three-dimensional analysis is an important base
for exact comparison studies. The FEM and FSE have
been developed and widely applied to vibration analysis
of various non-uniform structural members over the
years. Compared with FEM, the main advantage of FSE
is its efficiency, in particular for structural members with
regular geometry.

The objective of this paper is to present exact analyti-
cal solutions for the free longitudinal vibrations of bars
with variably distributed stiffness and mass. In the
absence of exact solutions, this problem can be solved
using approximated methods (e.g. the Ritz method) or
numerical methods (e.g. FEM). However, the present
exact solutions could provide adequate insight into the
physics of the problem and can be easily implemented.
The availability of the exact solutions will help in exam-
ining the accuracy of the approximate or numerical sol-
utions. Therefore, it is always desirable to obtain the
exact solutions to such problems.

2. Free longitudinal vibrations of one-step bars

The governing differential equation for longitudinal
(or axial) vibration of a one-step bar with variable cross-
section (Fig. 1) can be established as follows

∂
∂xSKx

∂y
∂xD5m̄x

∂2y
∂t2

1p(x,t) (1)

in which y, p(x,t), Kx andm̄x are the displacement in the
longitudinal direction, the intensity of axial force, axial
stiffness and mass per unit length, respectively, at sec-
tion x.

If p(x,t)=0, then, Eq. (1) becomes the equation of free
longitudinal vibration.

Setting

y(x,t)5X(x)sin(wt1γ0) (2)

Fig. 1. A cantilever bar with variable cross-section.
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wherew is the circular natural frequency andγ0 is the
initial phase.

Then, the equation of mode shape function,X(x), is
given by

Kx

d2X
dx21

dKx

dx
dX
dx

1m̄xw2X50 (3)

It is difficult to find the analytical solutions of Eq. (3)
for general cases, because the structural parameters in
the equation vary with the co-ordinatex. It is obvious
that the analytical solutions are dependent on the distri-
butions of mass and stiffness. Thus, the analytical sol-
ution of Eq. (3) may be obtained by means of reasonable
selections for mass and stiffness distributions. As sug-
gested by Wang [4], Tuma and Cheng [19] and Li et al.
[20–22], the functions that can be used to approximate
the variation of mass and stiffness are algebraic poly-
nomials, exponential functions, trigonometric series, or
their combinations. In this paper, two important cases
are considered and discussed as follows.

Case A: Expressions of mass and axial stiffness are
power functions as follows

Kx5αS11β
x
HDg (4)

m̄x5aS11β
x
HDc

(5)

in which a, c,α, β and γ are constants which can be
determined by use of the real values of the axial stiffness
and mass intensity atx=0, H/2 andH as follows

a=K0 a=m̄0

β=SKH

K0
D1

γ
−1 b=Sm̄H

m̄0
D1

c
−1

g=
lnKH

2
−lnK0

lnS1+
β
2D

c=
lnm̄H

2
−lnm̄0

lnS1+
β
2D

6 (6)

where m0, K0, mH
2
, KH

2
, mH, KH are the mass intensity

and the axial stiffness, respectively, atx=0, H/2, andH.
H is the height of the structure considered (Fig. 1).

It can be seen from Eq. (6) thatα is the longitudinal
stiffness atx=0, β and γ represent the taper of the non-
uniform bar.

Substituting Eqs. (4) and (5) into Eq. (3) gives

d2X
dx21

γβ

HS1+β
x
HD

dX
dx

1
aw2

α S11β
x
HDc−γ

X50 (7)

Setting

X=S1+β
x
HD

1−g
2
y

x=
2n

c−g+2S1+β
x
HD

c−γ+2
2

n2=
aw2H2

αβ2

6 (8)

Substituting Eq. (8) into Eq. (7) one yields

d2y
dx21

1
x
dy
dx

1S12
n2

x2Dy50 (9)

wheren=
1−γ

c−γ+2
Eq. (9) is a Bessel’s equation of thenth order. The

general solution of vibration mode shape function and
the eigenvalue equation are as follows

1. For a non-integern

X(x)5S11β
x
HD

1−γ
2

[c1Jn(x)1c2J−n(x)] (10)

where Jv(x) is the Bessel function of the first kind of
ordern.

The eigenvalue equation for this case is

Jn(l)J−(n−1)(lq)5 (11)

2J−n(l)Jn−1(lq) for a cantilever bar

or

Jn(l)J−n(lq)5J−n(l)Jn(lq) for a fixed2fixed bar (12)

where

l=
2n

c−γ+2

q=(1+β)
c−γ+2

2 6 (13)

Solving the eigenvalue equation obtains thejth eigen-
value,lj (j=1,2,%), and substitutinglj into Eqs. (8) and
(13) one yields thejth circular natural frequency,wj, and
the jth mode shape as follows

wj 5
(c−γ+2)uβulj

2H !α
a

(14)

Xj (x)5S11β
x
HD

1−γ
2 HJnFljS11β

x
HD

c−γ+2
2 G (15)

2
Jn(lj )
J−n(lj )

J−nFljS11β
x
HD

c−γ+2
2 GJ
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2. For an integern

X(x)5S11β
x
HD

1−γ
2

[c1Jn(x)1c2Yn(x)] (16)

whereYn(x) is the Bessel function of the second kind of
ordern.

The eigenvalue equation for this case is

Jn(l)Yn−1(lq)5Yn(l)Jn−1(lq) for a cantilever bar (17)

or

Jn(l)Yn(lq)5Yn(l)Jn(lq) for a fixed2fixed bar (18)

The jth circular natural frequency,wj, can be determ-
ined by Eq. (14), and thejth mode shape can be
expressed as follows

Xj (x)5S11β
x
HD

1−γ
2 HJnFljS11β

x
HD

c−γ+2
2 G (19)

2
Jn(lj )
J−n(lj )

YnFljS11β
x
HD

c−γ+2
2 GJ

The following special cases can be found from the
general solution presented above.

1. If γ=1, then, n=0, setting n=0 in Eqs. (16)–(19)
obtains the eigenvalue equations and mode shape
functions for this case.

2. If γ=c+2, then Eq. (7) is reduced to an Euler’s equ-
ation as follows

S11β
x
HD2d2X

dx21γβS11β
x
HDdX

dx
1

aw2

a
X50 (20)

The general solution of Eq. (20) can be written as

X(x)5S11β
x
HD

1−γ
2 Hc1cosFÎDlnS11β

x
HDG (21)

1c2sinFÎDlnS11β
x
HDGJ

For a cantilever bar, the general solution of Eq. (20)
is as follows

X(x)5S11β
x
HD

1−γ
2

sinFÎDlnS11β
x
HDG (22)

The eigenvalue equation is

2ÎDctnFÎDln(11β)G5γ21 (23)

in which

D5n22
(1−γ)2

4
.0 (24)

Because the case corresponding toD,0 is meaning-
less, it is not considered here.

3. If γ=c, then,n=12γ/2, the general solution becomes
that of a bar in which the mass of it is proportional
to its longitudinal stiffness. In general, solid bars and
some high-rise structures belong to this case.

4. WhenγÞ0, c=0, this case represents a bar with vari-
ably distributed stiffness and uniformly distributed
mass. The corresponding solution can be found from
the general solution. For this case,n=(12γ)/(22γ).
Some tall buildings can be considered as this case.

5. Whenγ=0, cÞ0, the general solution becomes that of
a bar with uniformly distributed stiffness and variably
distributed mass. For this case,n=1/(2+c).

6. Whenβ=21, the general solution becomes the sol-
ution of a wedged bar with variably distributed stiff-
ness and variably distributed mass (Fig. 2).

7. When γ=0 and c=0, the general solution represents
that of a uniform bar. The general solution for this
case can be written as [4]

X(x)5c1cosh
x
H

1c2sinh
x
H

(25)

in which

h25
aH2w2

α

The jth circular natural frequency,wj, and the jth
mode shape are as follows

wj =
(2j−1)p

2H !α
a

Xj (x)=cos
(2j−1)px

2H 6 For a cantilever bar (26)

or

Fig. 2. A cuneiform bar.
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wj =
jp
H!

α
a

Xj (x)=sin
jpx
H 6 For a fixed2fixed bar (27)

Case B: Expressions of mass and axial stiffness are
exponential functions as follows

Kx5αe−β
x
H (28)

mx5ae−b
x
H (29)

The parametersα,β,a,b can be determined by

α5K0, β5ln(K0)2ln(KH), a5m0, b5ln(m0) (30)

2ln(mH)

Substituting Eqs. (28) and (29) into Eq. (3) gives

d2X
dx22

β
H

dX
dx

1
a
αw

2e
(β−b)x

H X50 (31)

Setting

X=xnZ
x=e

(β−b)x
2H

n=
β

β−b

l2=
4aw2H2

α(β−b)2

6 (32)

Substituting Eq. (32) into Eq. (31) leads to

d2Z
dx21

1
x

dZ
dx

1Sl22
n2

x2DZ50 (33)

Eq. (33) is a Bessel’s equation of thenth order.
1. For a non-integern

X(x)5e
βx
2H[c1Jn(le

Ax
H )1c2J−n(le

Ax
H )] (34)

The eigenvalue equation is

Jn(l)Y−(n−1)(lA)5 (35)

2J−n(l)Jn−1(lA) for a cantilever bar

or

Jn(l)J−n(lA)5J−n(l)Jn(lA) for a fixed2fixed bar (36)

in which

A5e
β−b
2 (37)

Solving the eigenvalue equation one obtains thejth
eigenvalue,lj (j=1,2,%), and substitutinglj into Eq.
(32) gives thejth circular natural frequency,wj, and the
jth mode shape as follows

wj 5
uβ−bulj

2H !α
a

(38)

Xj (x)5e
βx
2H[Jn(lje

Ax
H )2

Jn(lj )
J−n(lj )

J−n(lj e
Ax
H )] (39)

2. For an integern

X(x)5e
βx
2H[c1Jn(le

Ax
H )1c2Yn(le

Ax
H )] (40)

The eigenvalue equation is

Jn(l)Yn−1(lA)5Yn(l)Jn−1(lA) for a cantilever bar (41)

or

Jn(l)Yn(lA)5Yn(l)Jn(lA) for a fixed2fixed bar (42)

Solving the eigenvalue equation one obtains thejth
eigenvalue,lj (j=1,2,%), and substitutinglj into Eq.
(38) gives thejth circular natural frequency,wj. The jth
mode shape for a cantilever bar and a fixed-fixed bar
can be written as

Xj (x)5e
βx
2H[Jn(lje

Ax
H )2

Jn(lj )
Yn(lj )

Yn(lj e
Ax
H )] (43)

The following special cases can be found from the
general solution presented above.

1. WhenβÞ0, b=0, it represents a bar with variably dis-
tributed stiffness and uniformly distributed mass. In
this casen=1.

2. Whenβ=0, bÞ0, it represents a bar with variably dis-
tributed mass and uniformly distributed stiffness. In
this casen=0.

3. Whenβ=b, the general solution becomes that of a bar
in which the mass of it is proportional to its longitudi-
nal stiffness. For this case, Eq. (31) is reduced to a
differential equation with constant coefficients as

d2X
dx22

β
H

dX
dx

1m2X50 (44)

in which

m25
aw2

α
(45)

It is obvious that if

β2

H224m2$0 (46)
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then, only zero solution exists.When

β2

H224m2,0 (47)

The general solution ofX(x) is given by

X(x)5e
βx
2HSA1cos

cx
H

1A2sin
cx
HD (48)

where

c25
H2

4 S4m22
β2

H2D (49)

The boundary conditions of a cantilever bar can be
written as

X(x)50 atx50 (50a)

dX(x)
dx

50 at x5H (50b)

Substituting Eq. (50a) into Eq. (48) one yieldsA1=0,
then using Eqs. (50)b and (48) one obtains the eigen-
value equation for a cantilever bar as follows

tan c52
2
βc (51)

Solving the above equation one obtains a set of cj

(j=1,2,%), then substituting cj into Eq. (49) yields the
jth circular natural frequency as follows

wj =
1
H!

α
aFc2

j +Sβ
2D2G

wj <
cj

H!
α
a
(j$2) 6 for a cantilever bar (52)

The boundary conditions of a fixed-fixed bar are
given by

X(x)50, atx50 andx5H (53)

Using Eqs. (53) and (48) one obtains the eigenvalue
equation and circular natural frequencies of a fixed-
fixed bar are as follows

sinc=0, cj =jp

wj =
1
H!

α
aF(jp)2+Sβ

2D2G
wj <

jp
H!

α
a
(j$2) 6 (54)

The jth mode shape for a cantilever bar and a fixed-
fixed bar can be written as

Xj (x)5e
βx
2Hsin

cj x
H

(55)

4. Whenβ=b=0, this case represents a uniform bar.

3. Free longitudinal vibrations of multi-step bars

Although the general solutions derived above for one-
step bars with variable cross-section can be used to
determine natural frequencies and mode shapes of many
structures, there are two problems to be solved. First,
some structures consist of several steps (see Fig. 3).
Second, the distributions of stiffness and mass of some
structures may not obey the assumed expressions given
in the above two cases. Such structures can be treated
as multi-step bars. If the steps are divided appropriately,
the distributions of stiffness and mass per unit length in
each step may match accurately or approximately one of
the expressions described in the last section. The analyti-
cal solution of a one-step bar with variable cross-section
can be used to derive the general solution and the eigen-
value equation of a multi-step bar using the transfer
matrix method. One of the advantages of the present
method is that the total number of steps required could
be much less than that normally used in the conventional
finite element methods.

A multi-step bar is shown in Fig. 3. It is assumed that
each step bar has variably distributed stiffness and mass.
The equation of mode shape of theith step bar is as fol-
lows

Kix

d2Xi

dx2 1
dKix

dx
dXi

dx
1m̄ixw2Xi50 (i51,2,%,q) (56)

The general solution of the mode shape function of
the displacement,Xi(x), and that of the axial force,Ni(x),
of the ith step bar can be expressed as

Fig. 3. A multi-step bar.
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Xi(x)5Ci1Si1(x)1Ci2Si2(x) (i51,2,%,q) (57)

Ni(x)5Ci1KixS9
i1(x)1Ci2KixS9

i2(x) (58)

where i denotes theith step bar andq is the number of
steps of the bar divided (Fig. 3),Si1(x) and Si2(x) are
special solutions of the mode shape of theith step bar,
and the prime denotes differentiation with respect tox.

If the stiffness and mass of theith step bar are
described by the power functions, Eqs. (4) and (5), then
Si1(x) andSi2(x) can be found from Eq. (10) or Eq. (16).
If the stiffness and mass of theith step bar are described
by the exponential functions, Eqs. (28) and (29), then
Si1(x) andSi2(x) are given in Eq. (34) or Eq. (40). If the
ith step bar is a uniform one, then,Si1(x) andSi2(x) can
be found from Eq. (25).

The transfer matrix method is introduced herein to
establish the mode shape equation and the eigenvalue
equation of a multi-step bar (Fig. 3).

The mode shape functions of displacementXi(x) and
the axial forceNi(x), can be expressed as a matrix equ-
ation

FXi(x)

Ni(x)
G5FSi1(x) Si2(x)

KixS9
i1(x) KixS9

i2(x)
GFCi1

Ci2
G (59)

According to Eq. (59) and considering the two ends
of the ith step bar (Fig. 4), we have

FXi0

Ni0
G5[S(xi0)]FCi1

Ci2
G (60)

FXi1

Ni1
G5[S(xi1)]FCi1

Ci2
G (61)

From Eq. (60), one yields

FCi1

Ci2
G5[S(xi0)]−1FXi0

Ni0
G (62)

Substituting Eq. (62) into Eq. (61) leads to

FXi1

Ni1
G5[Ti]FXi0

Ni0
G (63)

in which

Fig. 4. Definition of the parameters at the two end of theith step.

[Ti]5[S(xi1)][S(xi0)]−1

[S(xi0)]5FSi1(xi0) Si2(xi0)

Ki0S9
i1(xi0) Ki0S9

i2(xi0)
G

[S(xi1)]5F(Si1(xi1) Si2(xi1)

Ki1S9
i1(xi1) Ki1S9

i2(xi1)
G (64)

Xi05Xi(xi0) Xi15Xi(xi1), Ki05Kix(xi0), Ki15Kix(xi1),

Ni05Ni(xi0), Ni15Ni(xi1)J
[Ti] is called the transfer matrix because it transfers

the parameters at the end 0 to those at the end 1 in the
ith step bar.

The equation for the top step (i=q, Fig. 3) can be
established by use of Eq. (63) repeatedly as follows

FXq1

Nq1
G5[T]FX10

N10
G (65)

in which

[T]5[Tq][Tq−1]%[T1] (66)

[T] is a matrix which can be expressed as

[T]5FT11 T12

T21 T22
G (67)

If there is a lumped mass (Fig. 5,mi, attached to the
ith step bar, then, the transfer matrix [Ti] should be
replaced by [Tmi],

[Tmi]5F1 0

−miw2 1
G[Ti] (68)

According to the boundary conditions

x=0, X10=0

x=H Nq1=0
J (69)

Fig. 5. A multi-step bar with lumped masses.
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The eigenvalue equation for a multi-step cantilever
bar is obtained as follows

T2250 (70)

Using the boundary conditions

x=0, X10=0

x=H xq1=0
J (71)

obtains the eigenvalue equation for a multi-step fixed-
fixed bar as

T1250 (72)

The mode shape function of a multi-step bar can be
determined by use of Eq. (60) and the general solutions
of each step bar after the natural frequencies of the bar
have been found.

For a one-step bar (Fig. 6), the eigenvalue equation
can be found by settingq=1, i.e. the transfer matrix, [T],
should be replaced by

[T]5F1 0

−w2m 1
G[T1] (73)

When the mass and stiffness are described by the
power functions, the eigenvalue equation for a cantilever
bar (Fig. 6) is

For a non-integern:

J−n(l)FnqBJn−1(lq)1
n2α2β2m

aH2 Jn(lq)G5 (74)

2Jn(l)FnqBJ−(n−1)(lq)2
n2α2β2m

aH2 J−n(lq)G
For an integern:

Yn(l)FnqBJn−1(lq)1
n2α2β2m

aH2 Jn(lq)G (75)

Fig. 6. A cantilever bar with a lumped mass.

5Jn(l)FnqBYn−1(lq)2
n2α2β2m

aH2 Yn(lq)G
wherem is a mass attached on the top of the cantilever
bar (Fig. 6) andB=(1+β)

1+γ
2

If γ=c+2, then, the eigenvalue equation is

2ÎDctn[ÎDln(11β)]5g212
2αβ(1+β)n2m

aH
(76)

When the mass and stiffness are described by the
exponential functions, the eigenvalue equation for a can-
tilever bar (Fig. 6) is

For a non-integern:

J−n(l)F(β−b)lm
2aH

Jn(lA)1Ae−βJn−1(lA)G (77)

5Jn(l)F(β−b)lm
2aH

J−n(lA)2Ae−βJ−(n−1)(lA)G
For an integern:

Yn(l)F(β−b)lm
2aH

Jn(lA)1Ae−βJn−1(lA)G (78)

5Jn(l)F(b−b)lm
2aH

Yn(lA)1Ae−βYn−1(lA)G
After the jth natural frequency,wj (j=1,2,%), is

determined by solving the eigenvalue equation, thejth
mode shape can be found by substitutingwj into Eq. (63)
and using the boundary conditions. For example, setting
X10=0, N10=1, i=1, and using Eq. (63) obtainX11 andN11,
then, Xi1 and Ni1 (i=1,2,3,%q) can be found by using
Eq. (63), repeatedly, for a multi-step cantilever bar.

4. Numerical example

The main structure of Guangzhou Hotel Building is a
R.C. shear-wall structure with 24 stories. There is a 3-
storey appendage that is built on the top of the main
structure. Based on the full-scale measurement of free
vibration of this building [5], this building can be treated
as a stepped cantilever bar (Fig. 7) in free vibration
analysis. The major parameters of this building are listed
in Table 1. The transfer matrix method developed in this
paper is adopted herein to determine the longitudinal
fundamental natural frequency and mode shape. Because
the ith step bar considered herein is treated as an uniform
one,Si1(x) andSi2(x) are given by Eq. (25), i.e.

Si1(x)5coshi

x
H

Si2(x)5sinhi

x
H

(79)
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Table 1
Structural parameters and longitudinal fundamental mode shape of the buildinga,b

i xi(m) mi(kg/m) Ki (×109 kN) Xi(xi)

1 x10 0 0 (0) [0]
x11 5.35 35 010.2 133.14 0.1018 (0.100) [0.1022]

2 x20 5.35 0.1018 (0.100) [0.1022]
x21 15.25 41 438.8 123.68

3 x30 15.25 0.2686 (0.257) [0.2687]
x31 21.25 40 877.6 110.31 0.2686 (0.257) [0.2687]

4 x40 21.25 0.4267 (0.417) [0.4269]
x41 33.85 39 337.7 97.71 0.4267 (0.417) [0.4269]

0.5686 (0.560) [0.5687]
5 x50 33.85

x51 43.15 38 117.1 91.20 0.5686 (0.560) [0.5687]
0.7147 (0.710) [0.7147]

6 x60 43.15
x61 52.45 36 295.3 82.32 0.7147 (0.710) [0.7147]

0.8474 (0.837) [0.8475]
7 x70 52.45

x71 61.75 34 663.3 74.42 0.8474 (0.837) [0.8475]
0.9375 (0.929) [0.9375]

8 x80 61.75
x81 76.00 35 536.1 69.27 0.9375 (0.929) [0.9375]

1.0000 (1.000) [1.0000]

a The values in parentheses are the field measured data.
b The values in square brackets are the values calculated based on the model of a one-step cantilever bar with continuously varying stiffness

and mass.

Fig. 7. The tall building is treated as a stepped bar.

in which

h2
i 5

aiH2w2

ai

, ai5mi, αi5Ki, H576m (80)

mi andKi are found and listed in Table 1.
Substituting Eq. (79) into Eq. (64) one yields the

transfer matrices for this case as follows

[Ti]53coshi

xi1

H
sinhi

xi1

H

−Ki1

hi

H
sinhi

xi1

H
Ki1

hi

H
coshi

xi1

H
4 (81)

3coshi

xi0

H
sinhi

xi0

H

−Ki0

hi

H
sinhi

xi0

H
Ki0

hi

H
coshi

xi1

H
4

−1

i51,2,%7

[T8]

5F1 0

−w2m 1
G3cosh8

x81

H
sinh8

x81

H

−K81

h8

H
sinh8

x81

H
K81

h8

H
cosh8

x81

H
4 (82)

3cosh8

x80

H
sinh8

x80

H

−K80

h8

H
sinh8

x80

H
K80

h8

H
cosh8

x80

H
4

−1

in which m=30 612.2 kg is the lumped mass attached to
the top of the main structure of the building.

Substituting Eqs. (81) and (82) into Eq. (66) one
obtains [T]. Setting the elementT22 of [T] equal to zero
one obtains the frequency equation (i.e. Eq. (70)).

The calculated longitudinal fundamental natural fre-
quency is 5.568 Hz. If the lumped mass attached to the
top of the main structure (m=30 612.2 kg) is not con-
sidered, then, the calculated fundamental natural fre-
quency is 5.578 Hz. The computed results of the funda-
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mental mode shape are presented in Table 1. The
longitudinal fundamental natural frequency obtained by
the full-scale measurement [5] is 5.47 Hz and the meas-
ured values of the first mode shape function are also
tabulated in Table 1 for comparison purposes. It is clear
that the computed values in terms of the proposed pro-
cedure are in good agreement with the measured data.

If the proposed method for determining free longitudi-
nal vibration of a one-step cantilever bar with variably
distributed stiffness and mass is adopted to solve the
above problem, then the step varying distributions of
stiffness and mass should be changed to continuously
varying distributions. It can be seen from Table 1 and
Fig. 7 that the variation of the mass per unit length is
comparatively small, thus, it is reasonable to assume that
the mass is uniformly distributed along the height of the
building [Fig. 8(a)]. The mass per unit length,m̄, is
found as:=38 014.2 kg/m.

For simplicity, the distribution of axial stiffness per
unit length along the building height is described by the
power function, which is given as

Kx5α(11βx)γ (83)

According to the real distribution of axial stiffness of
this building:

at x50,EF05133.143109 kN

x5H,EFH569.273109 kN

The parameters,α,β,γ, are determined as

α5EF05133.143109 kN

β524.825310−3

γ52

The evaluated distribution of stiffness is shown in Fig.
8(c). Using the proposed formulas for determining free
longitudinal vibration of a one-step cantilever bar with
variably distributed stiffness and mass obtains that the
fundamental natural frequency is 5.58 Hz. The calcu-
lated values of the fundamental mode shape are also
listed in Table 1 (the values in square brackets). It is
obvious that the difference between the results calculated
by use of the step varying distributions of stiffness and
mass and those obtained based on the model of a one-
step cantilever bar with continuously varying stiffness
and mass is so small that it can be neglected. This sug-
gests that it is reasonable to simplify a multi-step bar
with step varying distributions of stiffness and mass as
a one-step bar with continuously distributed stiffness and
mass for free vibration analysis when the number of step
is large.

It should be noted that using the aforementioned pro-

Fig. 8. (a) The tall building is simplified as a one-step bar; (b) mass
distribution; (c) stiffness distribution.

cedure, the higher natural frequencies and corresponding
mode shapes could also be determined.

5. Conclusion

The exact analytical solutions describing the longi-
tudinal vibration of one-step bars with variably distrib-
uted stiffness and mass are derived. The obtained ana-
lytical solutions are used to establish the frequency
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equation of a multi-step non-uniform bar with several
boundary conditions. This approach for determining
structural dynamic characteristics of a multi-step non-
uniform bar that combines the transfer matrix method
and closed-form solutions of one-step non-uniform bars
leads to a single frequency equation for any number of
steps. The proposed formulae are simple and convenient
for engineering applications. The numerical example
showed that the calculated longitudinal fundamental
natural frequency and mode shape of a 27-storey tall
building are very close to the full scale measured data,
suggesting that the calculation method proposed in this
paper are applicable to free longitudinal vibration analy-
sis of tall buildings. It has been demonstrated through
the numerical example that the selected expressions are
suitable for describing the distributions of stiffness and
mass of typical tall buildings, and it is reasonable to sim-
plify a multi-step bar with step varying distributions of
stiffness and mass as a one-step bar with continuously
distributed stiffness and mass for free vibration analysis
when the number of steps is large.
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