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Abstract

Using appropriate transformations, the differential equations of free longitudinal vibrations of bars with variably distributed mass
and stiffness are reduced to Bessel's equations or ordinary differential equations with constant coefficients by selecting suitable
expressions, such as power functions and exponential functions, for the distributions of stiffness and mass. Exact analytical solutions
to determine the longitudinal natural frequencies and mode shapes for a one step non-uniform bar are derived and used to obtain
the frequency equation of a multi-step non-uniform bar with several boundary conditions. This approach which combines the transfer
matrix method and closed-form solutions of one step non-uniform bars leads to a single frequency equation for any number of
steps. Numerical example shows that the computed values of the longitudinal fundamental natural frequency and mode shape of a
tall building by the proposed method are close to the field measured data. It is also demonstrated through the numerical example
that the selected expressions are suitable for describing the distributions of stiffness and mass of typical tall HuildD@f.

Elsevier Science Ltd. All rights reserved.
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1. Introduction with varying cross-section [4—6]. The solution for free
longitudinal vibration of uniform structural members is
The longitudinal vibration of non-uniform bars is a well known. However, in general, it is not possible or,
subject of considerable scientific and practical interest at least, very difficult to get the exact analytical solutions
that has been studied extensively. For example, theof differential equations for free vibrations of bars with
analysis of longitudinal vibration of non-uniform bars is variably distributed mass and stiffness. These exact bar
important in the design of foundation. Meek and Wolf solutions are available only for certain bar shapes and
[1-3] presented an extensive set of solutions for ‘cone boundary conditions. Conway et al. ([7] obtained an
models’ (in essence, tapered rods) for foundation design.exact solution for a conical beam in terms of Bessel
Wang (Ref. [4] pp. 320-25) reported that the magnitude functions. Wang [4] derived the closed-form solutions
of the vertical component of ground motion is often for the free longitudinal vibration of a bar with variably
about one-third of the horizontal component, and the distributed stiffness and mass that were described by
vertical component of ground motions has a significant exponential functions. Bapat [8] obtained exact solutions
effect on earthquake induced responses of high-risefor the free longitudinal vibration of exponential and cat-
structures. Thus, it is necessary to determine the naturalenoidal rods. Lau [9] and Abrate [10] derived closed-
frequencies and mode shapes in vertical direction for form solutions for the free longitudinal vibration of rods
high-rise structures at design stage for certain caseswhose cross-section varies aA(x)=A,(X/L)> and
When analysing free vibrations of high-rise structures, A(X)=A[1+a(x/L)]?, respectively. Kumar et al. [11]
it is possible to regard such structures as a cantilever barfound exact solutions for the free longitudinal vibration
of non-uniform rods whose cross-section varies as
A(X)=(a+bX)" and A(x)=Assir?(ax+b). The natural fre-
* Tel.: +852-2784-4677: fax+852-2788-7612. quencies of such rods for various end conditions were
E-mail addressbcqgsli@cityu.edu.hk (Q.S. Li). calculated, and their dependence on taper was discussed.
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Their work provided useful benchmarking reference for
Nomenclature research development in simplified beam theories
because three-dimensional analysis is an important base
for exact comparison studies. The FEM and FSE have
been developed and widely applied to vibration analysis
of various non-uniform structural members over the
years. Compared with FEM, the main advantage of FSE
is its efficiency, in particular for structural members with
regular geometry.

The objective of this paper is to present exact analyti-
cal solutions for the free longitudinal vibrations of bars
with variably distributed stiffness and mass. In the
absence of exact solutions, this problem can be solved
using approximated methods (e.g. the Ritz method) or
numerical methods (e.g. FEM). However, the present

In order to find the closed-form solutions for the exact solutions could provide adequate insight into the
longitudinal free vibration of non-uniform rods or bars, physics of the problem and can be easily implemented.
it is usually assumed that the mass of a rod or a bar isThe availability of the exact solutions will help in exam-
proportional to its stiffness (e.g. Wang [4], Li et al. [6], ining the accuracy of the approximate or numerical sol-
Kumar et al. [11]). This calculation model is reasonable utions. Therefore, it is always desirable to obtain the
for a part of high-rise structures. However, this assump- exact solutions to such problems.
tion is not valid for tall buildings and many high-rise
structures. This is due to the fact that the mass of floors
is 80% or even more of the total mass of a tall building, 2 Free longitudinal vibrations of one-step bars
and the variation of mass at different floors is not sig-
nificant. So, the mass distribution with height is almost
constant for many cases, suggesting that the value of
mass of a tall building is not necessarily proportional to
its stiffness. This is confirmed by a series of shaking
tests on buildings of various types in which the mass 9/ oay\ _ 0%
and stiffness of individual buildings have been measured ax( )=mxat2+p(x,t) (1)
and reported [5,12,13]. In this paper, exact analytical sol-
utions for free longitudinal vibrations of one-step bars in whichy, p(xt), K, andm, are the displacement in the
with variably distributed stiffness and mass, in which longitudinal direction, the intensity of axial force, axial
the value of mass is not necessarily proportional to its stiffness and mass per unit length, respectively, at sec-
stiffness, are proposed. The derived analytical solutionstion Xx.
are used to obtain the frequency equation of a multi-step  If p(x,t)=0, then, Eq. (1) becomes the equation of free
non-uniform bar with several boundary conditions. This longitudinal vibration.
approach which combines the transfer matrix method Setting
and closed-form solutions of one step non-uniform bars . .
leads to a single frequency equation for any numbery(x’t)_x(X)S'n(wt+y°) 2)
of steps.

Apart from the several analytical methods for analys-
ing limited classes of non-uniform rods or bars, many
approximate methods have been developed. These ——
include the Ritz method, the finite strip method (FSM)
and the finite element method (FEM). In general, the
Ritz method can provide accurate solutions, however, it
depends on the choice of global admissible functions.

Liew and his co-workers [14-18] have developed
efficient three-dimensional Ritz algorithms for the free P(x, 1) [ﬂp(x, t)dx
K mxkx
Ny

y displacement in the longitudinal direction
p(x,t) intensity of axial force

X(x)  mode shape function

o circular natural frequency

m, mass per unit length at section
Ky axial stiffness at sectior

H height of the structure

a longitudinal stiffness ak=0

a mass per unit length at0

B,y.c constants in Eq. (3)

The governing differential equation for longitudinal
(or axial) vibration of a one-step bar with variable cross-
section (Fig. 1) can be established as follows

*0x

au

X

-m
X

*u
ot?
N +§"—dx
ox
vibration analysis of elastic solid cylinders. Their *
method, developed based on a global three-dimensional X A
elasticity energy principle with polynomial-based dis- N

. . . VARV AVAeV4
placement shape functions, is capable of extracting all 7
possible modes of vibration for elastic solid cylinders. Fig. 1. A cantilever bar with variable cross-section.
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wherew is the circular natural frequency ang is the
initial phase.

Then, the equation of mode shape functi®), is
given by

d?X dK, dX _

x& —+ mwaX =

dx dx 0

®)

It is difficult to find the analytical solutions of Eq. (3)
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3 X (8)

for general cases, because the structural parameters in Substituting Eq. (8) into Eq. (7) one yields

the equation vary with the co-ordinate It is obvious
that the analytical solutions are dependent on the distri-
butions of mass and stiffness. Thus, the analytical sol-

ution of Eqg. (3) may be obtained by means of reasonable

selections for mass and stiffness distributions. As sug-
gested by Wang [4], Tuma and Cheng [19] and Li et al.
[20-22], the functions that can be used to approximate
the variation of mass and stiffness are algebraic poly-
nomials, exponential functions, trigonometric series, or
their combinations. In this paper, two important cases
are considered and discussed as follows.

Case A Expressions of mass and axial stiffness are
power functions as follows

sza(lJrB%)y (4)

_ X\¢
rm—a(lﬂ%H)
in which a, c¢,a, B andy are constants which can be

determined by use of the real values of the axial stiffness
and mass intensity a&=0, H/2 andH as follows

=K, a=m,

INKE-InK, — InE-Inif, ( (6)

= c=
In(l%) In(l%) J

where my,, Ko, rTL;i IL'; my, K, are the mass intensity

and the axial stiffness, respectively,»at0, H/2, andH.
H is the height of the structure considered (Fig. 1).

It can be seen from Eq. (6) thatis the longitudinal
stiffness atx=0, B andy represent the taper of the non-

uniform bar.
Substituting Egs. (4) and (5) into Eq. (3) gives
d?X VB dX aw? X\
PH
Setting

V2
(g0
1-y

c-y+2

Eq. (9) is a Bessel's equation of theh order. The

2
dy ldy

dez " Ed ®)

wherev=

general solution of vibration mode shape function and

the eigenvalue equation are as follows
1. For a non-integev
X 1y
X(x)=(1+BH) QOAYGETANG) (10)
where J(&) is the Bessel function of the first kind of
orderv.

The eigenvalue equation for this case is

I (A)I_(-1)AO)= (11)
—J_,(A)J,_1(A6) for a cantilever bar
or
J,(A)I_(A8)=J_,(A)J,(A6) for a fixed—fixed bar  (12)
where
2n
:c—y+2 (13)

o=(1p) %

Solving the eigenvalue equation obtains ftireeigen-
value,/; (j=1,2,..), and substitutingd,; into Egs. (8) and
(13) one yields thgth circular natural frequencyy;, and
the jth mode shape as follows

_ 1 o
1y c-y+2
xj(x)=<1+sé)2{av[x,-<1+ ;‘) ? } (15)
3,() x\ 5
‘J_v@j)l”[l"(”BH) ]}
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2. For an integew

1-y 3.
X(x)=(1+sﬁ) QONGENAGE)

(16)

whereY, (&) is the Bessel function of the second kind of

orderv.

The eigenvalue equation for this case is

Q.S. Li/ Engineering Structures 22 (2000) 1205-1215

Because the case correspondindta0 is meaning-
less, it is not considered here.

If y=c, then,v=1—vy/2, the general solution becomes
that of a bar in which the mass of it is proportional
to its longitudinal stiffness. In general, solid bars and
some high-rise structures belong to this case.

4. Wheny+#0, =0, this case represents a bar with vari-

ably distributed stiffness and uniformly distributed
mass. The corresponding solution can be found from
the general solution. For this cases(1—y)/(2—Y).
Some tall buildings can be considered as this case.

5. Wheny=0, ¢#0, the general solution becomes that of

J.A)Y,_1(10)=Y,(A)J,_.(A0) for a cantilever bar  (17)
or
J,A)Y,(A0)=Y,(A1)J,(10) for a fixed—fixed bar (18)

Thejth circular natural frequencyy;, can be determ-

ined by Eq. (14), and thgth mode shape can be
expressed as follows

xj(x)=<1+[3:|>Z{JV[Aj(lﬂsi_(') 2 ]

(19)

3,00) X\
_J_v(ij)Y”["L'(”BH) ]}

The following special cases can be found from the

general solution presented above.

1.

2.

If y=1, then, v=0, settingv=0 in Egs. (16)-(19)
obtains the eigenvalue equations and mode shape
functions for this case.

If y=c+2, then Eq. (7) is reduced to an Euler’s equ-
ation as follows

X \2d2X x\dX aw?
(1+BH) MJFVB(“BH)deFaX_O (20)
The general solution of Eq. (20) can be written as

X(X)= <1+ B%)Z{clcos{ \Eln<1+ [3%)]

o] Bn(1+87) |

For a cantilever bar, the general solution of Eq. (20)
is as follows

(21)

X(x)=(1+Bl’_(|)1;ysin[\/5|n(1+sl’_(|)] 22)
The eigenvalue equation is
Z\ECtn[\Eln(lJrB)]:y—l (23)
in which

p=re— W g (24)

»

a bar with uniformly distributed stiffness and variably
distributed mass. For this cases1/(2+c).

. When3=—1, the general solution becomes the sol-

ution of a wedged bar with variably distributed stiff-
ness and variably distributed mass (Fig. 2).

7. Wheny=0 and &0, the general solution represents

that of a uniform bar. The general solution for this
case can be written as [4]

X(X) =c1cosn%+ czsinn% (25)

in which

aH%w?
o

2

The jth circular natural frequencyg;, and thejth
mode shape are as follows

(21 \/E
Y20 Va

e
Xj (X)_COST

For a cantilever bar (26)

/7 7777

4 Fig. 2. A cuneiform bar.
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jr o
“’i-H\/ a

) For a fixed-fixed bar (27)
X, (x):sinJ%X

Case B Expressions of mass and axial stiffness are

exponential functions as follows
K,=oe P (28)

m.= ae®r (29)

The parameters,3,a,b can be determined by
a =Ky, B=In(Ky)—In(Ky), a=my,, b=In(my) (30)
—In(my)

Substituting Egs. (28) and (29) into Eq. (3) gives

X B dX a , eox,
o H dX+aa)e n X=0 (32)

Setting

X=£vz )
-

V:Bljb > (32)
2_4aa)2H2

A= a(p-bp)

Substituting Eq. (32) into Eq. (31) leads to
&’z 1 dz ( vz)
otz =t A% |Z=0 33
d§2 é dé 52 ( )
Eq. (33) is a Bessel's equation of tiwéh order.

1. For a non-integev

X(X) =esr[c,d (Aer) +c,) (hem)] (34)

The eigenvalue equation is

3 ()Y AP) = (35)
—-J_,(A)J,_1(AA) for a cantilever bar

or
J,A)I(AA)=I_,(A)J,(AA) for a fixed—fixed bar (36)
in which

B-b
A=ez (37)

Solving the eigenvalue equation one obtains jtie
eigenvalue,4; (j=1,2,..), and substituting}; into Eq.
(32) gives thgth circular natural frequencyy;, and the

jth mode shape as follows

b3, Jo
o ZLZI—I' ! \/Z (38)

J,4;)
(%)

X, (x) = €5r{J, (1, 81— I (A en)] (39)

2. For an integew
X(X) =esH[Cod (Aer) +CoY, (hen)] (40)

The eigenvalue equation is
J.A)Y,_1(AA)=Y,(A)J,_1(AA) for a cantilever bar  (41)
or
J.A)Y,AA)=Y, (A1) (AA) for a fixed—fixed bar  (42)

Solving the eigenvalue equation one obtains jtie
eigenvalue,4; (j=1,2,..), and substituting}; into Eq.
(38) gives thgth circular natural frequencyy,. Thejth
mode shape for a cantilever bar and a fixed-fixed bar
can be written as

Jv(ﬂ'j)

N (43)

Bx AX
X;(X)=ezn[J,(A;er)—

The following special cases can be found from the
general solution presented above.

1. Whenp+#0, b=0, it represents a bar with variably dis-
tributed stiffness and uniformly distributed mass. In
this casev=1.

2. Whenf=0, b#0, it represents a bar with variably dis-
tributed mass and uniformly distributed stiffness. In
this casev=0.

3. When=b, the general solution becomes that of a bar
in which the mass of it is proportional to its longitudi-
nal stiffness. For this case, Eq. (31) is reduced to a
differential equation with constant coefficients as

_P 2y
dx®> H dx+“ X=0 (44)
in which

aw?
2
== (45)

It is obvious that if

2

%—4;1220 (46)
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then, only zero solution exists.When

2

¢—4,u2<0 47)
The general solution oX(x) is given by
X C . C
X(x)=eZBH<A1co%+Azsmﬁx) (48)
where
H2 2
2 2_F

The boundary conditions of a cantilever bar can be
written as

X(X)=0 atx=0 (50a)
dX(x) _ _
X =0 atx=H (50b)

Substituting Eq. (50a) into Eq. (48) one yields=0,

then using Egs. (50)b and (48) one obtains the eigen-

value equation for a cantilever bar as follows

tan = —éc (51)

Solving the above equation one obtains a set;of ¢
(j=1,2,..), then substituting;anto Eq. (49) yields the
jth circular natural frequency as follows

l 2
“ :H\/ Z[Cjz +<[23> ]
o fa
o= 20=2
J

The boundary conditions of a fixed-fixed bar are
given by

X(X)=0, atx=0 andx=H (53)

Using Egs. (53) and (48) one obtains the eigenvalue
equation and circular natural frequencies of a fixed-
fixed bar are as follows

N

» for a cantilever bar (52)

\
sinc=0, G=jr

1 . 2
o o]
01 [2=2)

The jth mode shape for a cantilever bar and a fixed-
fixed bar can be written as

(54)

J
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x . G
X(x)= ezBqum‘ﬁX (55)

4. When=b=0, this case represents a uniform bar.

3. Free longitudinal vibrations of multi-step bars

Although the general solutions derived above for one-
step bars with variable cross-section can be used to
determine natural frequencies and mode shapes of many
structures, there are two problems to be solved. First,
some structures consist of several steps (see Fig. 3).
Second, the distributions of stiffness and mass of some
structures may not obey the assumed expressions given
in the above two cases. Such structures can be treated
as multi-step bars. If the steps are divided appropriately,
the distributions of stiffness and mass per unit length in
each step may match accurately or approximately one of
the expressions described in the last section. The analyti-
cal solution of a one-step bar with variable cross-section
can be used to derive the general solution and the eigen-
value equation of a multi-step bar using the transfer
matrix method. One of the advantages of the present
method is that the total number of steps required could
be much less than that normally used in the conventional
finite element methods.

A multi-step bar is shown in Fig. 3. It is assumed that
each step bar has variably distributed stiffness and mass.
The equation of mode shape of ttik step bar is as fol-
lows

d?X;  dK;, dX;
Kot ax ox

M@?X=0 (=1,2,..,0) (56)

The general solution of the mode shape function of
the displacementX;(x), and that of the axial forcey;(x),
of the ith step bar can be expressed as

2

1

S ST T/
Fig. 3. A multi-step bar.
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Xi(¥)=Ci1S1(¥) +Ci2S2(¥) (i=1,2,.. (57)
N;(X) = Ci1KxSi1(x) + Ci2KixSia(X) (58)

wherei denotes theth step bar andj is the number of
steps of the bar divided (Fig. 35.(X) and S,(x) are
special solutions of the mode shape of ttte step bar,
and the prime denotes differentiation with respeck.to
If the stiffness and mass of thgh step bar are

Q)

[T =[S )] SX0)]
_[Sa0)  SaXo)
[S(Xio)] - |:K|OS;1()('O) K,oS;Z(X|0):|
_[Sal)  Salxia)
[Sxil)] - |:K|1S;l()(' 1) K,ls;Z(X|1):|
Xio=Xi(Xi0) Xi1=Xi(%i1), Kio=Kix(Xi0), Ki1=Kix(Xi1),

described by the power functions, Egs. (4) and (5), then
S1(X) and S4(X) can be found from Eq. (10) or Eq. (16).
If the stiffness and mass of thith step bar are described
by the exponential functions, Egs. (28) and (29), then
S:(X) and S,(X) are given in Eq. (34) or Eq. (40). If the
ith step bar is a uniform one, theg;(x) and S,(x) can
be found from Eq. (25). ;
The transfer matrix method is introduced herein to 'th Step bar.

establish the mode shape equation and the eigenvalue "€ €quation for the top step=Q, Fig. 3) can be
equation of a multi-step bar (Fig. 3). established by use of Eq. (63) repeatedly as follows

Nio=Ni(Xi0), Ni1= Ni(xil)}

[Ti] is called the transfer matrix because it transfers
the parameters at the end 0 to those at the end 1 in the

The mode shape functions of displacem#f{k) and Xq1 X10
the axial forceN(x), can be expressed as a matrix equ- =[T] (65)
ation Nea Nio
[xi<x>]:[sl(x) S0 ][c] sy
NEOJ LKiS(0 KiSz(JLC: [M=[TdlTe-]---[T:] (66)
[T] is a matrix which can be expressed as
According to Eq. (59) and considering the two ends Ty Tin
of the ith step bar (Fig. 4), we have [T]=[ ] (67)
_x - C T21 T22
° =[S(xi0)][ il] (60) If there is a lumped mass (Fig. By, attached to the
[ Nio Ci ith step bar, then, the transfer matriX][ should be
[ Xiq | C replaced by T,
=[x 61
N [S(K])][Cij (61) 1 0
. [Tl = 5 [T] (68)
From Eq. (60), one yields -mo” 1
[Ci, ] Xio
c Z[S(Xao)]_l[N ] (62) According to the boundary conditions
L\~i2] i0
Substituting Eq. (62) into Eq. (61) leads to x=0, xm:o} (69)
o x=H Ny ;=0
el (63)
[Nl "IN
in which

Xi1

Xio

>y

Fig. 4. Definition of the parameters at the two end of itestep.

VAV AV AV Ay avd

Fig. 5. A multi-step bar with lumped masses.
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The eigenvalue equation for a multi-step cantilever
bar is obtained as follows

Using the boundary conditions
x=0, X;~0
x=H X;;=0

obtains the eigenvalue equation for a multi-step fixed-
fixed bar as

T,,=0 (72)

The mode shape function of a multi-step bar can be
determined by use of Eq. (60) and the general solutions

of each step bar after the natural frequencies of the bard-v(4)

have been found.

For a one-step bar (Fig. 6), the eigenvalue equation
can be found by setting=1, i.e. the transfer matrix],
should be replaced by

1 0

P l][T]] (73)

m=[

When the mass and stiffness are described by the
power functions, the eigenvalue equation for a cantilever
bar (Fig. 6) is

For a non-integew:

J_V(/l)[n@BJV_l(/w)+n2aa|:EZva(/10)]= (74)
—Jv(x)[neBJ_(v_l,(/w)—r'zz:ﬁjr"J_v(w)}
For an integen:
Y, (1) [ n6BJ, ,(16)+ nzgl:gszv(;Le)] (75)
LR
H

VAV AV AV AV A AV 4

Fig. 6. A cantilever bar with a lumped mass.
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n%a?3°m
aHBZ Y, (16)

wherem is a mass attaghed on the top of the cantilever
bar (Fig. 6) andB=(1+3) 2
If y=c+2, then, the eigenvalue equation is

Z\Ectn[\ﬁln(HB)]:y_l_w

=Jv(/”t)[nQBYV_1(}LO)—

(76)

When the mass and stiffness are described by the
exponential functions, the eigenvalue equation for a can-
tilever bar (Fig. 6) is

For a non-integew:

(B-byAm .
[ oy AR +AE BJv_l(AA)} (77)
= ‘]v(ﬂ’) [(B;z)_? m\]—v(ﬂ'A) - Ae_BJ—(v—l)(;]'A):|
For an integew:
YV(/”L){(B;Z)jm\lv(lA)+Ae‘BJV_1(/”LA)] (78)

(B-b)Am
2

=JV(/”L)[ (;LA)+Ae-BYV_1(,1A)]

After the jth natural frequencyw, (j=1,2,..), is
determined by solving the eigenvalue equation, jthe
mode shape can be found by substitutimgnto Eq. (63)
and using the boundary conditions. For example, setting
X170, N1=1,i=1, and using Eq. (63) obtaiX,; andN,,
then, X;; and N;; (i=1,2,3,..q) can be found by using
Eq. (63), repeatedly, for a multi-step cantilever bar.

4. Numerical example

The main structure of Guangzhou Hotel Building is a
R.C. shear-wall structure with 24 stories. There is a 3-
storey appendage that is built on the top of the main
structure. Based on the full-scale measurement of free
vibration of this building [5], this building can be treated
as a stepped cantilever bar (Fig. 7) in free vibration
analysis. The major parameters of this building are listed
in Table 1. The transfer matrix method developed in this
paper is adopted herein to determine the longitudinal
fundamental natural frequency and mode shape. Because
theith step bar considered herein is treated as an uniform
one, S1(X) and S,(x) are given by Eg. (25), i.e.

Su(9=cosy So(9=sin; (79)
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Table 1
Structural parameters and longitudinal fundamental mode shape of the bufiding

i Xi(m) m(kg/m) Ki (x10° kN)  Xi(x)
1 X10 0 0 0) [9]
X2 5.35 35010.2 133.14 0.1018 (0.100) [0.1022]
2 Yoo 5.35 0.1018 (0.100) [0.1022]
Xor 15.25 41438.8 123.68
3 Xa0 15.25 0.2686 (0.257) [0.2687]
X1 21.25 40877.6 110.31 0.2686 (0.257) [0.2687]
4 X0 21.25 0.4267 (0.417) [0.4269]
Xa 33.85 39337.7 97.71 0.4267 (0.417) [0.4269]
0.5686 (0.560) [0.5687]
5 Xso 33.85
Xer 43.15 38117.1 91.20 0.5686 (0.560) [0.5687]
0.7147 (0.710) [0.7147]
6 Xeo 43.15
Xe1 52.45 36 295.3 82.32 0.7147 (0.710) [0.7147]
0.8474 (0.837) [0.8475]
7 an 52.45
X7 61.75 34 663.3 74.42 0.8474 (0.837) [0.8475]
0.9375 (0.929) [0.9375]
8 Xeo 61.75
Xe1 76.00 35536.1 69.27 0.9375 (0.929) [0.9375]
1.0000 (1.000) [1.0000]

@ The values in parentheses are the field measured data.
® The values in square brackets are the values calculated based on the model of a one-step cantilever bar with continuously varying stiffness
and mass.

m=30612.2 kg .,
76.0 ‘ :
35536.1 |69.27E0 0097% Simﬂ%
34663.3 | 74.42E09 n %o 77. 2y
52.45 —Kig—sim— K osn,
362653| 82.32E09 H H
43.15
38117.1 91.2E09 T
33.85 [Tal
39337.7 97.71E09
Xa1 . Xg1
21.25 co SiMa—
40877.6 110.31E09 1 0 ey M
15.25 = _rm 1 . 0 (82)
41438.8 123.68E09 <ism _K81785,m787 K81—8cos78
m;=35010.2 kg/m ki=133.14E09 KN
-1
Vd P P4 7 Vd Vv 4 7 X
cosps sinng .
Fig. 7. The tall building is treated as a stepped bar. H H
in which K80 smn8 Kso?_' cosn8
H2w2
n?za ,a=m, a,=K;, H=76m (80) _ _ .
Q; in which m=30 612.2 kg is the lumped mass attached to
m andK; are found and listed in Table 1. the top of the main structure of the building.
Substituting Eq. (79) into Eg. (64) one yields the  Substituting Egs. (81) and (82) into Eq. (66) one
transfer matrices for this case as follows obtains []. Setting the elemeril,, of [T] equal to zero
one obtains the frequency equation (i.e. Eq. (70)).
cosn»ﬁ sinn& The calculated longitudinal fundamental natural fre-
'H 'H quency is 5.568 Hz. If the lumped mass attached to the
[Til= n n X (81) top of the main structuren30 612.2 kg) is not con-
—K,lH'smn,H '1chos7iﬁ1 sidered, then, the calculated fundamental natural fre-

quency is 5.578 Hz. The computed results of the funda-
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mental mode shape are presented in Table 1. The
longitudinal fundamental natural frequency obtained by m=30612.2 Kg
the full-scale measurement [5] is 5.47 Hz and the meas-
ured values of the first mode shape function are also
tabulated in Table 1 for comparison purposes. It is clear
that the computed values in terms of the proposed pro-
cedure are in good agreement with the measured data.
If the proposed method for determining free longitudi-
nal vibration of a one-step cantilever bar with variably
distributed stiffness and mass is adopted to solve the
above problem, then the step varying distributions of
stiffness and mass should be changed to continuously
varying distributions. It can be seen from Table 1 and

Fig. 7 that the variation of the mass per unit length is e
comparatively small, thus, it is reasonable to assume that _
the mass is uniformly distributed along the height of the x m =38014.2 kg/m

building [Fig. 8(a)]. The mass per unit length, is
found as:=38 014.2 kg/m.

For simplicity, the distribution of axial stiffness per
unit length along the building height is described by the
power function, which is given as

K,=0(1+BX)Y (83)

According to the real distribution of axial stiffness of
this building:

atx=0,EF,=133.14<10° kN o
x=H,EF,;=69.27x10° kN

x A 69.27E09
The parametersy,3,y, are determined as

0=EF,=133.14x10° kN
=-4.825<1073
y=2

The evaluated distribution of stiffness is shown in Fig.
8(c). Using the proposed formulas for determining free
longitudinal vibration of a one-step cantilever bar with
variably distributed stiffness and mass obtains that the
fundamental natural frequency is 5.58 Hz. The calcu-
lated values of the fundamental mode shape are als
listed in Table 1 (the values in square brackets). It is
obvious that the difference between the results calculated
by use of the step varying distributions of stiffness and cedure, the higher natural frequencies and corresponding
mass and those obtained based on the model of a onemode shapes could also be determined.
step cantilever bar with continuously varying stiffness
and mass is so small that it can be neglected. This sug-
gests that it is reasonable to simplify a multi-step bar 5. Conclusion
with step varying distributions of stiffness and mass as
a one-step bar with continuously distributed stiffness and The exact analytical solutions describing the longi-
mass for free vibration analysis when the number of steptudinal vibration of one-step bars with variably distrib-
is large. uted stiffness and mass are derived. The obtained ana-

It should be noted that using the aforementioned pro- lytical solutions are used to establish the frequency

cJ:ig. 8. (@) The tall building is simplified as a one-step bar; (b) mass
distribution; (c) stiffness distribution.
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